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Abstract— We propose a framework that actively estimates
extrinsic contact with tactile feedback then uses it as a low
dimensional input to the peg-in-hole insertion policy. An iSAM
graph estimator and an active tactile feedback controller work
collaboratively to get an accurate location of the extrinsic
contact line. The reduction in the input dimension, from a high-
resolution tactile image to a single line, enables the insertion
policy to train in simulation. By randomizing the object-hole
shape while training the policy in the simulation, the policy can
generalize to various object-hole shapes. Lastly, we demonstrate
the active extrinsic contact line estimation and test the insertion
policy in the real experiment. We show that the proposed
method inserts various-shaped objects with a higher success
rate and fewer insertion attempts than previous works that use
an end-to-end approach.

I. INTRODUCTION

The ability to sense and utilize tactile interaction between
fingers and grasped object is a key foundation that enables
dexterous manipulation skills [1]. The tactile sensing can be
used as a feedback signal to regulate desired tactile con-
figurations. One major problem in tactile-feedback control
is localizing and controlling an external contact: a contact
between the grasped object and its environment [2], [3].
For example, consider pivoting an unknown object while
avoiding slip at the contact between the object and its
environment. It requires accurate localization of the contact
and an ability to regulate the external contact mode using
indirect observation through tactile sensing.

A task where the external contact matters is the peg-in-
hole insertion task. A misalignment between the peg and
the hole results in contact during the insertion attempt. The
contact triggers a tactile signal, which can be used to localize
the contact or plan the next insertion attempt [4], [S], [6].
Some of the key challenges in this task are as follows:

o The tactile signal is a partial observation of the state;
many different contact configurations can cause the
same tactile signal [7].

o The difficulty of modeling the contact mechanics makes
it hard for the methods to generalize to unknown
objects.

« For learning-based methods, it should have a reasonably
high data efficiency.

In this work, we tackle both the contact localization
problem and the peg-in-hole insertion task in a combined
framework. For the contact localization, we use incremental
smoothing and mapping (iSAM) factor graph alongside an
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active tactile-feedback controller. The factor graph and the
feedback controller work collaboratively to estimate the
extrinsic contact line. The contact line estimation is then used
as an input to the insertion policy, as opposed to the end-
to-end approach [6] where the policy takes input as a raw
tactile sensor image. Since the input to the policy is a low
dimensional representation, the policy training can be done
in a simple simulation with randomly shaped objects. Lastly,
we demonstrate the contact line estimation and the insertion
policy in a real experiment.

II. APPROACH OVERVIEW

The task we solve is a typical peg-in-hole problem. We
make several assumptions to implement our framework:

« Object bottom surfaces and hole top surfaces are flat.

« Objects and holes have un-chamfered corners.

« Objects and holes have convex shapes.

The approach is composed of two parts: the active ex-
trinsic contact sensing and the insertion policy. In the ac-
tive extrinsic contact sensing part, the iSAM graph works
collaboratively with the active tactile-feedback controller to
estimate the extrinsic contact line. Then, the reinforcement
learning (RL) policy takes the estimated contact line as input
and computes the action for the insertion.

A. Tactile Module and iSAM Graph

We use GelSlim [8], a vision-based tactile sensor, to
capture the deformation image on the robot finger during the
insertion (Fig. 1a). The image is passed to the tactile module
with a convolutional neural network (CNN) architecture. The
tactile module is trained with supervised learning to estimate
the relative SE(3) pose between the gripper and the object.
The gripper-object relative pose and the robot proprioception
data are used in the iISAM graph to estimate the extrinsic
contact line.

Fig. 2 shows the iSAM graph. g;, 0;, and ¢; are the
variables for gripper pose, object pose, and estimated contact
line, respectively. The iSAM enables to add new measure-
ments incrementally and update the estimation in real-time.
Each small circle with different colors represents different
types of factors:

« Gripper Prior takes the robot proprioception measure-

ment as a prior on the gripper pose.

o Object Prior imposes the prior belief on object pose.

+ Gelslim Deformation takes the gripper-object relative

pose from the tactile module and impose the relation
between g;,git1,0i,0i+1-
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Approach Overview. iSAM factor graph (red) and active tactile-feedback controller (blue) runs collaboratively to estimate extrinsic contact line.

RL policy (green) takes the estimated extrinsic contact line as input and computes the next action. (a) Scene of insertion attempt and the tactile image
captured by GelSlim finger. (b) Gripper-Object relative pose computed by the tactile module. (c) 3D and top view of the extrinsic contact line estimation.
The bold red line is the current estimate of the extrinsic contact line. (d) Actor output. The blue rectangle is the current pose and the green rectangles are

the candidate poses for the next insertion attempt.
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« Contact Line on Object Surface constrains the esti-
mated contact line to be on the object’s bottom surface.

« Fixed Contact Line constrains the estimated contact
line to be stationary over time.

« Sticking Contact constrains the relative translation
between the object and the contact line to be fixed,
which corresponds to the sticking contact.

B. Active Tactile-Feedback Controller

Fig. 3 shows the schematics of the active tactile-feedback
controller. Its logic comprises the passive push-down and

the active exploration with rocking and pivoting. During
push-down phase, it executes a proportional control on
gripper-object relative deformation. The vertical deformation
is set to a non-zero value to ensure the object contacts the
environment with sufficient normal force. Other components
are set to zero.

If the object does not tilt enough so the iSAM graph
fails to estimate a contact line with enough confidence, it
enters the rocking phase. In the rocking phase, the robot is
commanded to follow a cone-like trajectory while maintain-
ing deformation smaller than a set threshold. If the iSAM
graph fails to find a contact line even after the rocking, the
controller stops and the estimator returns a failure output.

If the iISAM graph succeeds in estimating an extrinsic
contact line either in push-down or rocking, the controller
enters the pivoting phase to help the iSAM graph to gain
more confidence. The controller tries to pivot the object
around the extrinsic contact line. It is assumed that the
tactile deformation will remain constant during the pivoting
if the object pivots without slipping and also maintaining a
constant contact force. The controller commands the robot
to rotate around the current contact line estimate while the
components other than the rotation axis are controlled by a
proportional control. The proportional gains are exerted to
the direction where it tries to keep the tactile deformation
constant.

A key idea in the above framework is the synergistic
interaction between the controller and the iSAM estimator.
A better contact line estimation from the iSAM graph helps
the controller to pivot the object with less slipping. On the
other direction, a better pivoting with a consistent pivoting
axis helps the iISAM graph to get more accurate contact line



TABLE I
SUCCESS RATE AND AVERAGE NUMBER OF INSERTION ATTEMPTS FOR VARIOUS OBJECT-HOLE PAIRS.

Object (blue) & O @ O © O ©
Hole (black) Shape
Active Success Rate (%) 100 97 99 100 95 95 97
iSAM-RL Avg. Attempt # 1.94 1.98 2.40 2.94 2.61 3.04 4.13
RL-end2end Success Rate (%) 97 - 97 - 98 - 90
(Dong [6]) Avg. Attempt # 2.96 - 3.83 - 2.34 - 5.42
SL-end2end Success Rate (%) 85 - 70 - 94 - 15
(Dong [5]) Avg. Attempt # 3.04 - 3.34 - 2.60 - 3.83

estimate. The interaction acts as a stable attractor that enables
to find an accurate contact line estimate with the simple
proportional controller.

C. RL Policy

The RL policy takes the estimated extrinsic contact line
from the iSAM as the input and computes the SE(2) pose
correction for the next insertion attempt. Since the input to
the policy is a low dimensional representation (a single line),
it is easy to simulate the policy; given two random shape
polygons, each representing the object and the hole, and an
SE(2) misalignment between the two, we can find a contact
line that the object can pivot around.

The policy training is done purely in simulation. We vary
the object and hole shape on every training episode so the
policy can be generalized to unseen object and hole shapes.
The random shape is generated by randomly scattering points
and drawing a convex hull around the points.

We use twin delayed deep deterministic policy gradient
(TD3) [9] with recurrent neural networks to train the policy.
The use of recurrent networks enables the policy to deal with
partial observability by considering the previous history of
observations and actions.

III. RESULT

Table I shows the success rate and the average number of
insertion attempts for various object-hole pairs. Each object-
hole pair has 2.25 mm of clearance. Results from previous
works [6], [5] are also shown for comparison. Note that [6],
[5] used the demonstrated object-hole pair as training cases,
while our method used it as testing cases. The proposed
method performed similarly or better for each object-hole
pair. Especially for the rectangle object-hole, the proposed
method outperformed [6] by a 7% margin in success rate
with 1.3 less number of average attempts.

IV. CONCLUSIONS

In this short paper, we proposed a framework that esti-
mates extrinsic contact then uses it as a low dimensional
representation of the contact configuration. In the estimation
part, an iSAM graph and an active tactile feedback controller
worked collaboratively to get an accurate estimate of the con-
tact line. In the policy part, by reducing the input dimension
from a high-resolution image to a single line, we enabled the

RL policy to train in simulation. Also, by randomizing the
object-hole shape during training, the RL policy was able
to generalize to various object-hole shapes. As the future
direction of this framework, we plan to extend this approach
to more general manipulation skills.
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