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Abstract— Object surface reconstruction brings essential ben-
efits to robot grasping, object recognition, and object manipula-
tion. When measuring the surface distribution of an unknown
object by tapping, the greatest challenge is to select tapping
positions efficiently and accurately without prior knowledge of
object region. Given a searching range, we propose an active
exploration method, to efficiently and intelligently guide the
tapping to learn the object surface without exhaustive and
unnecessary off-surface tapping. We analyze the performance of
our approach in modeling object surfaces within an exploration
range larger than the object using a robot arm equipped with
an end-of-arm tapping tool to execute tapping motions. Exper-
imental results show that the approach successfully models the
surface of unknown objects with a relative 59% improvement
in the proportion of necessary taps among all taps compared
with state-of-art performance.

I. INTRODUCTION

Surface reconstruction of unknown objects allows various
applications such as robot grasping [1], object recognition,
and object manipulation [2]. Tactile sensors, as a common
tool for shape recognition, provide intuitive information of
objects by direct interaction on the object’s surface [3]. Al-
though tactile sensors reduce the occlusion problem existing
in vision sensors, they suffer from sensory noise and require
lengthy contact duration with the surface [4]. Within touch
methods presented in the literature, random search and grid
search methods are most common in unknown object shape
recognition without prior information gained from the object.
Intuitively, the main drawbacks of such methods are that
they are inefficient due to a large amount of contact, less
robustness for a mandatory resolution, and also require pre-
defined searching regions.

In this paper, we propose an active tapping method for
unknown object surface reconstruction. The goal of this study
is to learn the object surface shape using tapping motions
without prior knowledge, and maximize valid on-surface taps
to increase accuracy and efficiency of surface reconstruction.
In order to acquire assessment of object surfaces, the tapping
motion is conducted by Baxter robot arm, during which
the force on an end-of-arm tool is detected by the force
sensor to recognize touches on objects. More specifically,
three dimensional positions of tapping on object’s surface are
determined by forward kinematics of the robot arm in world
coordinates, where the height values are recorded when
contacts with object surface are recognized. A probabilistic
representation of the object surface is generated by Gaussian
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Fig. 1: Conceptual illustration of the robot estimating object
surface by an active tapping via Gaussian process in an
unknown searching space.

Process Regression (GPR) in an explicit way. An active
searching approach is proposed to efficiently and intelligently
guide the tapping positions to reduce the uncertainty in the
regression function. The main contributions of our work are
as follows:

• We use tapping motion to gain object assessment by
force data on the robot arm’s end effector.

• We use Gaussian Processes as surface potential, with an
active searching method to suggest a next point to tap
and avoid exhaustive exploration.

• We do not require prior-knowledge of object regions.
Accuracy and efficiency of surface reconstruction is
prompted by maximizing on-surface tapping and mini-
mizing unnecessary off-surface tapping.

II. ACTIVE TAPPING WITH GAUSSIAN PROCESS FOR
OBJECT SURFACE RECONSTRUCTION

A. Problem Statement

The main problem of this work is to efficiently search for
tapping positions without knowing object edge and region.
We apply GPR to represent the uncertainty of surface estima-
tion and an acquisition function to guide the tapping points
to minimize the uncertainty of target function. The surface
representation model based on GPR is detailed in Section
II-B. In consideration of lacking the prior information of
object region, there exists a great uncertainty in off-surface
space in the searching area, where less tapping should be
executed. In order to guide the tapping to focus on object



surfaces to enhance accuracy, we use a weight function to
cumulatively place weights on each tapping point. To be
more specific, unprofitable tapping happening within off-
surface space, which is called unprofitable areas, will result
in continuously reduced weights in adjacent areas in each
iteration. Intuitively, after the small number of unprofitable
tapping is conducted, most of next tapping positions are
concentrated within on-surface space. The active searching
function is elaborated in Section II-C.

B. Gaussian Processes for Surface Estimation

We define the problem as a general regression problem.
Given an exploration domain χ→ Rd, an unknown surface
function f : χ, and a set of observations of the function D =
(xi, f(xi)) where xi is the tapping position in exploration
space, and f(xi) is the tapping result including surface height
estimation, our goal is to predict the value of the function
f∗ = f(X∗) at positions X∗, thus building the surface model.

The GP distribution is defined as p(f) = GP(f ;µ,K)
where µ is the mean function, and K is associated kernel
function. Given a finite set of points X ⊆ χ, the GP prior
on f is given by a joint distribution on f = f(X):

p(f |X) = N (f ;µ(X),K), (1)

where K = k(X,X) is the covariance matrix for all point
pairs in X. The GP prior mean µ(X) is set to zero.

To predict the values of f at X∗, a joint distribution of X
and f∗ is written as:

p(f , f∗) = N (

[
f
f∗

]
;

[
µ(X)
µ(X∗)

]
,

[
K,K∗
K∗,K∗∗

]
), (2)

where K∗ = k(X,X∗), and K∗∗ = k(X∗,X∗).
Using the Gaussian conditioning, the posterior distribution

can be computed as:

p(f∗|X∗,X, f) = N (f∗|µ(X∗),Σ(X∗))

µ(X∗) = µ(X∗) + KT
∗ K

−1(f − µ(X))

Σ(X∗) = K∗∗ −KT
∗ K

−1K∗.

(3)

We utilize the radial-basis function (RBF) kernel based
on our assumption that nearby points share close function
values in surface distribution in this study. The RBF kernel
is given as:

k(xi,xj) = exp(−1

2
(
d(xi,xj)

σ
)2) (4)

where d is the Euclidean distance between two points, and
σ is the hyperparameter.

For each point within the posterior distribution, the mean
which encodes the predictions at corresponding position and
the variance which represents the confidence level of current
prediction are given by GPR. Based on the definition of
RBF kernel, the variance at predicted points decreases as the
distance to the observed points decreases. At each iteration
i when tapping is done, a new point (xi, f(xi)) is fit into
the GP, and posteriors are updated to better approximate the
unknown surface function.

C. Active Exploration Function

As every tapping trail is costly, we intent to avoid a brute-
force tapping in search space and concentrate tapping on
object surface. In order to build surface model accurately
and efficiently, we exploit an active exploration function
which suggests the tapping positions at each iteration. The
exploration function is interpreted as a joint outcome of an
uncertainty function and a weight function, to respectively
minimize the uncertainty of surface model estimation and
place weights on possibly suggested points. The uncertainty
function and the weight function are accordingly elaborated
as follows.
Uncertainty Function. Based on attributes of the GP poste-
rior distribution, with n posteriors, the uncertainty function
is given as:

u(X;Dn) : X→ χ = Σ(X). (5)

At tth iteration, the uncertainty function suggests tapping
point xt by:

xt = arg max
x

u. (6)

Given that the variance at observed points is zero, un-
certainty of each prediction decreases as it gets closer to
observations. The advantage of using the uncertainty function
is that the predicted point with the highest uncertainty will
be sampled to reduce the uncertainties of the whole surrogate
function, thus approaching the true function by a small
number of essential samples.
Weight Function. As the uncertainty function guides tapping
to positions with the highest uncertainty, there still exit a
drawback in using the uncertainty function alone. When the
object edge is unknown, uncertainties will not only exist in
on-surface space, but also off-surface space. As redundant
off-surface samples will not enhance the speed and accuracy
of surface model, exhaustive searches in those areas need
to be minimized. In order to avoid redundant sampling,
we employ an additional GPR to model the possibility of
unprofitable tapping at each point. We model the possibility
at each point as:

fw(x) : x→ Rd =

{
1, if x on surface
0, if x off surface.

(7)

H(xi, fw(xi)), as weights of explored points, is fit into a
GP model given as:

p(fw∗|X∗,X, fw) = N (fw∗|µw(X∗),Σw(X∗)) (8)

with the RBF kernel. The GP model, therefore, predicts the
probability of each point within the domain being on-surface
and off-surface points. Consequently, the weight function is
given as:

w(X;Hn) = µw(X). (9)

As the kernel implies neighboring points own similar
function values, close points of unprofitable points gain less
weight than those of on-surface points.
Exploration Function. As the range of uncertainty function
and weight functions lies in [0, 1], the exploration function
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Fig. 2: (a) a toy block with wave shape as object I; (b) given searching space; and (c-f) GP model (the first row) and
corresponding suggestion function (the second row) at four non-consecutive taps. The star marker on suggestion function
represents the next suggested point. At the first iterations, three tapping points generated randomly are executed as input of
GP model. The hyperparameter used is RBF kernel with σ2 = 0.017. Please zoom-in on (c-f) for details.

is defined as the product of uncertainty function and weight
function:

e(X) = u(X)w(X). (10)

The exploration function suggests the next point by finding
the x with the highest function value. In this way, the
suggested point has a higher possibility of lying in on-
surface space, based on higher weights placed at on-surface
points. Compared with using uncertainty function alone,
the exploration function suggests points near the on-surface
points, which avoids redundant exploration in unprofitable
areas.

III. EXPERIMENTS AND RESULTS

A. Experimental Setting

We set up our experiment on Baxter robot’s 7 degrees of
freedom arm. We only use the torque-force sensors on the
end-effector to determine whether there is a collision with
objects by measuring the force changes on the end-of-arm
tooling during the tapping motion. A tapping tool is attached
at the end of robot arm with fixed poses to touch the object.
The tapping is conducted by the robot arm moving down at
3 cm per step with 0.5 second pause. At each contact with
objects, the end-effector pose within Cartesian coordinates by
the arm kinematics is recorded as tapping points. The objects
utilized include a wave shaped and slope shaped toy block
with dimensions (cm) 16L × 6W × 11H and 17L × 6W
× 8H respectively. The objects are placed in a pre-defined
23L × 23W cm searching area at the desk placed in front of
Baxter robot where the kinematics of Baxter’s left arm could
be ideally solved. The searching space is highlighted within
the grey transparent rectangle and the unprofitable tapping
areas are uncovered desk area as shown in Fig. 2(b).

(a) Object II (b) GP model

Fig. 3: GP surface estimation of object II. Please zoom-in
on (b) for details.

B. Results Analysis

Fig. 2 shows the results of estimating surface of object I
from 14 iterations, and Fig. 3 shows the results of surface
reconstruction of Object II from 19 taps. In Fig. 2, we
can see that the suggestion function tends to find the next
point adjacent to known surface positions as off-surface
positions are placed with relatively low weights by the weight
function. Therefore, uncertainties within on-surface areas are
minimized in priority, and exploration regions are expanded
to unknown areas only when a neighboring point is suggested
and proved to be on object surface.

As mentioned in our problem statement, given a searching
space without the object region, there exits certain areas that
objects are not occupied which we call unprofitable space.
Because every tapping motion is expensive, unprofitable
tapping is required to be minimized while on-surface tapping
needs to be maximized to enhance efficiency and accuracy.

We compared our weighted exploration-based approach
with Yi’s [5] uncertainty-based method in the performance
of active surface reconstruction given no prior knowledge
of object region. Fig. 4 shows the result of selected iter-



(a) Iteration 1 (b) Iteration 10 (c) Iteration 16

Fig. 4: The result of three iterations within the exploration
and reconstruction process. The top row shows the result of
uncertainty metric-based method, and the second row shows
the results using our proposed method. The exploration
procedure is conducted with Object I placed on the right
side of searching space. Please zoom-in for details.

(a) Iteration 1 (b) Iteration 10 (c) Iteration 16

Fig. 5: Comparison of minimized uncertainties distribution
result within searching space by uncertainty function (top
row) and exploration function (second row). The procedure is
conducted with Object I placed on the right side of searching
space.

ations within the surface reconstruction process for object
I placed in its searching place as in Fig. 2(b). The ‘•’
in each figure indicates valid taps on object surface while
‘×’ encodes unprofitable taps on the desk. The background
colormap indicates the probability distribution of selecting
next tapping position. Areas with lighter color indicate a
higher probability of object existence while darker areas
indicate a higher probability of unprofitable tapping. The first
row is the results of uncertainty function-based GP surface
reconstruction. Within a total number of 17 taps, only 2
taps happened on object surface and 15 taps happened in
unprofitable areas. The reason is that within the searching
space, uncertainties not only exists on object surface but also
prevails within unprofitable space.

With the goal of only minimizing the uncertainties in
a searching space which is considerably wider than the

object region, suggested tapping positions by the uncertainty
function are distributed evenly within the entire space. Shown
by the figures in the first row, the entire area was explored.
Accordingly, on-surface area which is essential was not
emphasized and an unignorable number of unprofitable taps
was executed. The second row shows the results of our
approach. Compared with the uncertainty-based method,
only 5 taps were within unprofitable areas, indicating a 59%
improvement in the percent of effective taps among 17 taps
in total. More notably, the unprofitable taps mainly took
place around the object contour, and valid taps were centered
on the object coverage areas, as evident by the last figure.
In reliance on our proposed exploration function, areas in
close proximity with valid taps possess higher probability of
embodying the target object, which can be more explicitly
observed from the first three figures.

In the first row of Fig. 5, it is shown that the uncertainty-
based tapping result minimizes the uncertainties of the whole
searching region. Our approach, shown in the second row, se-
lectively minimizes the uncertainty distributed within object
coverage area and evades the unprofitable space.

IV. CONCLUSION

In this paper, we proposed an active tapping method
to estimate object surface distribution based on Gaussian
Process Regression (GPR) model. Different from the existing
literature that requires prior information of object region, we
implemented our study with unknown objects in a searching
space consisting of on-surface contact points and off-surface
contact points. As the off-surface tapping is considered as
expensive, we propose an active tapping method to guide
the tapping positions intelligently. Our method incorporates
minimization of uncertainties existing in searching area with
a priority of object coverage area, by a weight function
to estimate probability distribution of surface points. We
validated our method on a Baxter robot arm executing
tapping motions with a tapping tool attached at the end-
effector on objects. The results showed that the object surface
can be estimated with a small number of tapping trails.
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