
  

  

Abstract— Here we simulate the tactile sensory information 
processing in a fully recurrent network of excitatory and 
inhibitory neurons. The neuron model has previously been 
shown to capture essential aspects of the Hodgkin-Huxley 
biological neuron model. We specifically explore the impact of 
noise in the spike generation of the tactile sensors, and how the 
time constants of the biological neurons in a network may be 
adapted to cope with such noise. We find that in networks with 
short time constants, and hence higher temporal precision, the 
risk is high that the network will segregate noise (i.e. as in 
overfitting) in the spike generation rather than the underlying 
haptic input signal, which is composed of features distributed 
across somewhat longer periods of time. Hence, low-pass 
filtering effects that arise because of these time constants can be 
beneficial for a biological neuronal network processing tactile 
information, to focus its available capacity on the main 
underlying haptic input features. 

I. INTRODUCTION 

The properties of biological tactile information processing 
remain a source of inspiration for engineered haptic systems. 
An important aspect of understanding biological sensory 
systems is to understand how the biological brain can 
represent and use the information [1], [2]. This is in turn to a 
large extent defined by the properties of the neuronal 
networks of the brain [3]–[5]. Recent data of both anatomical 
and physiological nature indicate that the neocortical system 
handling tactile information is globally interconnected [6], 
[7]. Hence, it is likely a network which is extensively 
recursive. Other data indicate that neuronal spike generation, 
which is the means by which neurons transfer information to 
other neurons, is inevitably stochastic [8]. Stochasticity will at 
least to some extent render neurons noisy. Even tactile 
sensors are neural, implying that tactile sensors have a limited 
temporal precision. Unlike deterministic systems, neuronal 
systems will hence to some degree need to rely on 
probabilistic representation of tactile data and find the most 
efficient way to work with such data. Another aspect of 
biological neuronal transmission of information is that it is 
low-pass filtered, due to the transformation of an electrical 
signal, the axon action potential or spike, to a chemical signal 
and then back to an electrical signal in the receiving neuron 
through the process of synaptic transmission. 

Here we simulate sensors and processing neuronal 
networks to elucidate the limitations that different noise levels 
would imply for the neural representation and segregation of 
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tactile information in recurrent neuronal networks. The 
neuron model is a simplified, non-spiking, version of a 
biological neuron working according to Hodgkin-Huxley 
principles, which has previously been shown to capture all 
central generic biological neuron properties while also being 
highly advantageous in preventing activity saturation and 
spurious noise generation in perpetually active, fully recurrent 
networks [9], [10]. In this neuron model, as in biology, the 
transmission of information between neurons is always mildly 
low-pass filtered. 

With this work we aim to examine the effects of noise in 
emulated tactile sensors, superimposed on one and the same 
underlying signal, on the variance of the responses in a 
neuronal network. Additionally, we explored the effect of 
sensor noise on the ability of a network to generate separable 
neuron output responses for two different underlying tactile 
sensory inputs.  

II. MATERIALS AND METHODS 

A. Neuron Model 
In this study we used a non-spiking Linear Summation 

neuron Model (LSM) that was designed to capture the 
important characteristics of a H-H conductance-based model 
[9]. LSM output activity (𝐴, (1-2)) was given by a sum of 
weighted (w) input synaptic activity (a), that was normalized 
using static leak (𝑘!"#"$%) and dynamic leak (𝜏&'() 
components. The static and dynamic leak components mimic 
the effect of the RC circuit created by the ion channels and 
the capacitance of the membrane. The output activity of this 
neuron model was given by the following equations, 
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 𝑖𝑓	𝐴 < 0, 𝑡ℎ𝑒𝑛	𝐴 = 0. (2) 

The 𝑘!"#"$% = 1 and 𝜏&'( =	1 150⁄ , these values were 
kept constant for this study. 

B. Network Structure 
A densely connected neuronal network configuration, 

comprising of both excitatory and inhibitory neurons was 
used in this study (Fig. 1A). The excitatory neurons (Ns, blue 
circles) were connected to all other neurons in the network via 
excitatory synapses (blue arrows, Fig. 1A) whereas inhibitory 
neurons (INs, red circles) were connected only to excitatory 
neurons via inhibitory synapses (red arrows, Fig. 1A). In this 
study, the network comprises 5 excitatory and 5 inhibitory 
neurons, where two of the excitatory neurons (neuron #1, #2) 
received external sensory inputs. All the synaptic weights 
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were pseudo-randomly generated as normal distribution with 
a mean (μ) of 0.3 and standard deviation (σ) of 0.1. The 
weights of inhibitory synapses were set negative and the 
excitatory were set positive.  

C. Pseudo-random Inputs 
In this study, we used two sets of pseudo-random inputs 

(Input #1 & #2, Fig. 1B, C). Each of the two input sets 
comprised two sensory signals (Sensor #1 & #2, Fig. 1B, C). 
For each input, we generated two pseudorandom spike trains 
with uniform normal distribution at a mean frequency of 50 
Hz. A MATLAB function “randi” was used to generate these 
spike time distributions. Further these spike trains were 
convoluted to mimic post-synaptic potentials, using the 
following kernel function, 
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where, 𝑡∗ is the input spike time, 𝜏& is the decay time (4 
ms),	 𝜏5 is the rise time (12.5 ms), 𝜏6 is the constant to 
calculate ratio between rise time and decay time (21.3 ms), 
and 𝜏7 is the latency time which is zero in this case. These 
values were chosen based on the previous work (Rongala et 
al., 2018). The convoluted signals were given as sensory 
inputs (Fig. 1B, C) to two excitatory neurons in the network. 

A gain value (synaptic time constant gain, Fig. 3) was 
used as multiplication factor to the base time constants (of 
𝜏& , 𝜏5	&	𝜏6, as reported above) to achieve a wide range of 
synaptic time constants. 

D. Input Spike Noise (ISN) 
Noise was implemented in two different ways. First, we 

provide temporal noise to the input spike trains. Secondly, 
‘white’ noise was added to the signal of each neuron, and this 
noise was varied with respect to amplitude. 

To study the effect of input noise on the network dynamics, 
we have provided the network with a given sensory input for 
25 repetitions. During each repetition, a defined amount of 
noise was added to the sensory input spike times. The noise 
was generated as uniform distribution within the given range. 
We have explored different levels of input noise, ranging 
between ±0	𝑡𝑜	 ± 50	𝑚𝑠 (Fig. 2).  

Additionally, a random gaussian noise (μ = 0.025 and σ = 
0.001) was added to the neuron activity (neuron activity 
noise, NAN) across all neurons in the network. 

E. Statistical Analysis 
1) Cross correlation analysis 

A cross correlation measure was used to calculate the 
similarities between neuron output activity (Fig. 2, 3). A cross 
correlation index value of “0” indicates high dissimilarity 
between the signals that were compared, and a value of “1” 
indicates high similarity. An inbuilt MATLAB function 
“xcorr” (with zero-lag) was used to compute this cross-
correlation measure. 

2) Frequency analysis 
A continuous wavelet transform was performed (using 

inbuilt MATLAB function “cwt”) to define the frequency 

composition of the neuron output activity over time. The 
power across each frequency band averaged over time for a 

Figure 1 (A) The network that was studied. A densely connected neuronal 
network comprising of 5 excitatory neurons (N, blue circles) and 5 
inhibitory neurons (IN, red circles). The neurons were interconnected 
using excitatory and inhibitory synaptic connection that were indicated 
using blue and red lines/arrowheads respectively. (B) Convoluted sensory 
signals (see Methods) of Input #1. (C) Convoluted sensory signals of 
Input #2. (D) Neuron output activity (Neuron #3-5) for a given Input #1. 
(E) Neuron output activity (Neuron #3-5) for a given Input #2. 



  

given continuous neuron activity signal is reported in Fig. 
2B. 

III. RESULTS 

A. Effect of Noise 
We first assessed the effect of input spike noise (ISN) on 

the variance of neuron output activity, within a densely 
connected neuronal network. We provided the network with 
Input #1 for 25 repetitions, during each of these repetitions a 
given amount of noise was added to the input spike times. 
Fig. 2A shows the mean cross-correlation measure across 
neuron output activity (N3) pairs, for 25 repetitions of Input 
#1 with a given ISN. The cross-correlation measure remained 
relatively high (~0.8) for lower amount of ISN (±0 −
	±2	𝑚𝑠), indicating that the neuron output activity had little 
variance for a temporal noise of 0-4 ms in the input spike 
trains. Further increase in the ISN led to more steep declines 
in the cross-correlation measure indicating a loss of temporal 
information within the neuron output activity. Fig. 2B shows 
the effect of ISN on the frequency component in the neuron 
activity. An increase in ISN gradually devoured the peak 
frequency from 50 Hz towards 0 Hz, leading to loss of 
activity dynamics in the neuron output activity. 

Note that in Fig. 2A the cross-correlation measure for ISN 
= ±0 is 0.8 instead of 1, the value that would arise in the 
absence of ISN. Hence, the NAN (neuron activity noise) 
always created an inconsistent behavior across different 

repetitions of the same underlying sensor signal in the 
network, as measured from the output of N3 in this case.  

B. Effect of Synaptic Time Constants 
We further assessed the effect of synaptic time constants 

on the neuron activity variance, and the ability of the 
network to separate two different underlying inputs.  

First, the time constant of the kernel function to generate 
the sensor signals (Fig. 1B, C) were adapted to achieve 
different post-synaptic responses for the same input spike 
trains. Fig. 3A shows the mean cross-correlation measure 
across neuron output activity (N3) pairs, for 25 repetitions 
of Input #1 with a given ISN and synaptic time constant. 
Fig. 3A shows that the effect of an increase in synaptic 
time constants results to a decrease in the effect of ISN on 
the neuron output activity variance. Hence, a higher 
synaptic time constant (bigger value) will have a low-pass 
filter effect on the input activity, which thereby helps in 
reducing the effect of ISN on the neuron output activity.  

In Fig. 3B we instead report the cross-correlation 
measure across neuron output activity (N3) for two 
different inputs (Input #1 & #2). In this case, a higher 
correlation value indicated that the network performed 
worse in discriminating between the two different inputs. 
In Fig. 3B, an increase in the synaptic time constants led to 
a higher segregation of the neuron activity for different 
inputs, demonstrating that higher time constants could help 
the receiving network to separate different sensory input 
signals. 

 

IV. CONCLUSION 
These results (Fig. 2, 3) demonstrate that low pass filtering 

effect (membrane time constants, synaptic time constants) 
that appears in biological systems, would be advantageous in 
reducing the effects of noise during sensory information 
processing. These results also suggest that brain networks 
would not necessarily benefit to operate with millisecond 

Figure 2. (A) A mean cross-correlation measure for the neuron output 
activity of neuron N3 using pairwise comparisons of output across 25 
repetitions of Input #1 with a given input spike noise. (B) Frequency 
analysis on the neuron mean activity (N3) across 25 repetitions of Input 
#1, for a given input spike noise. 

Figure 3 (A) A mean cross-correlation measure across neuron output 
activity (N3) pairs, for 25 repetitions of Input #1 with a given input spike 
noise and synaptic time constants. (B) A cross-correlation measure across 
neuron output activity (N3), for Input #1 and Input #2, with a given input 
spike noise and synaptic time constants. 



  

precision in the representation of tactile sensory information. 
Instead, more benefits might arise by focusing the available 
system capacity on identifying the largest possible number of 
input sensory features (i.e. in biology the available resources 
of the system would equal the number of neurons in the brain 
of the particular species under consideration). 
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