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Abstract—In this paper, we propose a local filtering tech-
nique directly applicable on large-area tactile sensing systems.
The proposed filter can process the contact distribution without
the need of intermediate steps that are required in the typical
method of generating a tactile image. We particularly focus
on the design of a filter to detect contours in the contact
distribution. The approach is validated in a task of planar
contour following performed using a robot equipped with two
different end-effectors (planar and non-planar) sensorized with
large-area tactile sensing technology. Additional experiments
have been performed to evaluate strengths and limitations of
the proposed approach with respect to tactile image-based data
processing techniques.

I. INTRODUCTION

Technological advancements have recently enabled the
realization of complex large-area tactile systems, namely
robot skins, composed of thousands of distributed transducers
which can be conformed to curved surfaces and can po-
tentially cover the whole robot body [1]-[5]. Despite the
large number of tactile sensors technologies available, there
is still a lack of standards at hardware level [6]. This makes it
challenging to design tactile data processing algorithms that
can be applied on such a large variety of devices.

Therefore, tactile data processing is usually performed by
transforming raw sensor measurements into tactile images,
i.e. planar representations of the contact pressure distribution
[7]. The major limitation of tactile images is that they can
only be directly generated from sensors distributed on a
planar surface. Although it would still be possible to generate
a tactile image from non-planar tactile sensors distributions
[8], the procedure requires several processing steps and it
can introduce distortions in the resulting tactile image.

The contribution of this paper is to present a technique to
directly process the contact pressure distribution captured by
a robot skin system without the need of intermediate steps
required to generate tactile images. The proposed method is
independent of the spatial arrangement of the tactile elements
and the surface over which they are integrated. Within the
scope of this paper, the specific problem of processing the
contact distribution to extract contours is addressed.

Figure 1 illustrates the outcome of the proposed approach,
where the contours of the contact distribution generated by
two fingers pressing over a non-planar surface are correctly
extracted. The proposed technique is validated in a task of
planar contour following, where robot skin is integrated on
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Fig. 1. The proposed method of edge detection filtering applied to a non-
planar robot skin patch. (a) The CySkin technology integrated on a curved
surface. Green circles correspond to independent pressure transducers. (b)
A contact with two fingers. (c) Robot skin response (top view); darker dots
correspond to lower responses. (d) Filtered robot skin response (top view).

two types of end-effectors: (i) a small flat end-effector with
20 tactile elements; (ii) a large and non-planar end-effector
with 211 tactile elements. Furthermore, a comparison be-
tween the proposed method and an approach based on tactile
images is presented, followed by an analysis of strengths and
weaknesses of the proposed approach.

II. LOCAL PROCESSING FOR ROBOT SKIN

The robot skin system is composed of N distributed trans-
ducers, called faxels, mounted on a rigid non-planar manifold
S with a non-regular spatial distribution. The position of each
taxel t; € R is assumed to be known with respect to a given
reference frame. We define p(t;) the response of the robot
skin system in the position t;. The taxel responses p(t;),
along with their positions in the space t;, provide a discrete
information of the pressure distribution applied on S at a
given time instant. The problem addressed in this paper is to
introduce a filtering technique to compute the values p(t;),
encoding contours in the pressure distribution.

Similarly to what proposed in [8], we represent taxels
positions and their proximity relations by defining a skin
mesh. In this representation, taxels are connected by edges
(similarly to a graph structure) which provide both topo-
logical and geometric information. Let T = {t;,...,ty} be
the set containing the position of each taxel. The Delaunay
triangulation [9] applied to T allows to define a N x N matrix
E describing topological relations among adjacent tactile
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Fig. 2. Adjacent taxels considered when computing Equation (3). (a) Taxels
arranged as a flat 2D matrix. In this case Equation (3) corresponds to a
convolutional operation performed with a 3x3 kernel mask. (b) Generic
non-regular spatial arragement of taxels placed over a non-planar surface.

elements:

1, if taxels i and j are connected

0, otherwise
ey
The set T containing taxel positions and the adjacency matrix
E can be used to define a mesh S* = (T,E), representing a
piecewise linear approximation of the sensorized surface S.
While T and E provide information on the topological
connections among the taxels, the geometric relations, rep-
resenting the distance among connected elements, can be
represented with a matrix D € RV, defined as:

D = [D];j = [D];i = ||t: — ;]| E;; 2)

where D;; = 0 for non-connected elements.

The information given by the adjacency matrix E can be
used to compute the values p;(t;) taking into account the
response of nearby sensors. In this paper, the filtered values
are computed as:

plt) =p(twi+ Y. p(t;)wi 3)
jeadj(i)
where w;; € R are scalar weight coefficients and adj(i) is the
adjacency list of the i-th taxel defined as:

adj(i) ={j} vje{l,....N} :

Equation (3), representing a weighted sum of the taxel
responses, can be rewritten in a more compact form by
imposing E; = 1 for i = {1,...N}. Therefore, Equation (3)
becomes:

E,'j =1

pt) =Y p(tj)wi 4)
Jjeadj(i)
It is worth noting that if taxels were arranged as a matrix
(like pixels in an image) and w;; were constants, Equation (4)
would correspond to a 2D convolution operation performed
with a 3x3 squared kernel (see Figure 2(a)). A graphical
representation of Equation (4) applied to a generic skin mesh
is represented in Figure 2(b). An Equation similar to (4) is
used in Graph Convolutional Neural Networks to compute
features in the hidden layers with w;; learned at training time
[10]. However, similarly to the image processing domain, it
will be shown that a proper choice of the weights w;; allows

to design a filter. In this paper, they are computed to highlight
edges in the pressure distribution, as described in the next
Section.

III. CONTOUR EXTRACTION ON ROBOT SKIN DATA

In image processing, contours can be detected in grayscale
images by looking for variations in the luminance of nearby
pixels. This is usually performed by designing convolutional
masks approximating the first or second order derivative [11].
Due to the non-regular structure of the skin mesh, in this
paper the weights w;; are computed as an approximation of

L L ti—t;
the directional derivative along the vector k;; = -5~
ij

Dij ’ (&)

P(th"Dijk.i.j)_P(ti) if i
wij = .
0, otherwise

The weights computed with Equation (5) are not constant for
each taxel. Indeed they depend on D;; and k;; that change
when different set of taxels are considered. The weights in
Equation (5) can be substituted in Equation (4), leading to:
. p(ti+D;k;;) — p(t;
p)= ¥ plt) 2 ’b’_’) W e
ij

Jj€adj(i)

Therefore, p(t;) can be interpreted as the response to the
input p(t;) of a spatially varying linear filter. By computing
Equation (6), even small variations on the intensity values
among adjacent taxels are detected. Therefore, a tresholding
operation must be performed on the values p;(t;), thus
obtaining:

if ﬁ(ti) > €
otherwise

(7

where € is a value that must be properly tuned to highlight
edges in the contact shape. Figure 1 shows an example of
the result of this filtering technique applied on human fingers
pressing on a non-planar sensorized surface. As it can be
seen, the values p;(t;) mapped on the robot skin mesh allow
to extract the contour of the fingers.

IV. EXPERIMENTAL VALIDATION

The developed filter was validated in a simple task of
planar contour following performed using a robot equipped
with a sensorized end-effector. The tactile sensing technology
used in this paper, namely CySkin, is presented in [12].
To validate the filtering technique proposed in this paper,
CySkin was integrated on two different end-effectors (see
Figure 3). The first is flat and contains 20 taxels. The second
is non-planar and contains 221 taxels. Both end-effectors
were fixed on a Franka Emika arm, which is used to perform
the contour following task on two objects: a ruler (a straight
line path) and a mug (a circular path). Figure 4 shows the
objects and the non-planar end-effector in contact with them.

The proposed technique was compared with a tactile image
based approach in the case of the non-planar end-effector.
The processing pipeline needed to create a tactile image
described in [8] was used. The tactile image is generated
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Fig. 3. The two end-effectors used to validate the proposed approach.(a)
Planar tactile patch: 20 taxels.(b) Non-planar tactile patch: 211 taxels.
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Fig. 4. Object used to validate the proposed approach. (a) Robot following a
ruler of 25 mm lenght and 1 mm thickness. (b) Robot following the contour
of a mug of 81 mm and 75 mm outer and inner diameters respectively.

by resampling the flattened skin geometry with a step of 1
mm, generating an image of 74 x 132 pixels.

The experiments were performed using the following
tapping-based procedure:

1) the robot starts from a random initial configuration
where the end-effector is placed over the contour of
the object that must be followed;

2) the robot proceeds with constant velocity along the z-
axis until a contact is detected with tactile sensors;

3) the robot is controlled to apply a constant desired force
along the z-axis of 15 N;

4) once the force controller reaches the steady state, the
tactile measurements are filtered to extract the contours
and the motion command is computed similarly to
what described in [13];

5) the end-effector is lifted of 1 cm and its position and
orientation are adjusted to be aligned with the contour
of the object;

6) after the end-effector is correctly repositioned, the
robot starts again from step (2) until the object contours
are fully explored.

This procedure has been repeated three times for each object
and end-effector.

V. RESULTS AND DISCUSSIONS

Figure 5 reports the outcome of one of the three exper-
iments of contour following performed on the mug in the
case of the non-planar end-effector. Red dots correspond to
the desired contact location xg (see Figure 3) at each contact.
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Fig. 5. Example of circular contour reconstructed using the non-planar
end-effector. Red dots correspond to the position of Xz at each contact. The
blue lines represent the inner and outer perimeter of the mug. The blue
dot corresponds to the initial position of xg. The exploration is performed
clockwise. (a) Non-planar end-effector - proposed method. (b) Non-planar
end-effector - tactile image based.

TABLE 1
RESULTS OF THE CONTOUR FOLLOWING TASK PERFORMED WITH THE
SMALL PLANAR END-EFFECTOR.

Object Method d(mm) | 6,(mm) | dy(mm)
Ruler | Proposed approach | 0.97 0.67 2.99
Ruler Tactile Image 0.89 0.49 293
Mug | Proposed approach | 1.53 0.87 4.16
Mug Tactile Image 1.34 0.85 3.53

The blue dot represents the position of xg at the first contact.
The blue lines represent the inner and outer perimeter of the
mug.

To evaluate whether the contours of the objects were
correctly tracked, the position of xz at each contact was
recorded and the distance with the real contour of the object
has been computed.

For each one of the three experiments the following
statistics were computed: (i) the mean distance; (ii) the
standard deviation; (iii) the maximum distance.

Tables I and II summarize the results obtained in all the
three experiments reporting: d the average of the mean dis-
tances, 6 the mean standard deviation and dj; the maximum
distance across all the three experiments.

Results show that with both techniques the object contour
is tracked with good accuracy. Indeed, the thickness of the
ruler and the mug (respectively 1 mm and 3 mm) are lower
than the pitch among the sensors, which is 7.5 mm. It can
be seen from the Tables that the maximum error is much
lower than the pitch. The method based on tactile images
performs slightly better, providing a smoother reconstruction
of the contour of the object. Indeed, the current limitation
of the proposed method is that the contours extracted with
Equation (4) exactly correspond to the positions t;. This
in general is not true since the edge may pass through
two adjacent taxels. This is clearly related to the resolution
of the skin mesh. A finer pitch among the sensors would
lead to more precise results. On the contrary, the filtering
based on tactile images allows to reconstruct edges lying
across the vertices composing the mesh. Indeed, with tactile
image based methods the skin geometry is usually resampled
using a grid with a finer resolution than the pitch among
the sensors. This leads to a slightly higher precision in the



TABLE I
RESULTS OF THE CONTOUR FOLLOWING TASK PERFORMED WITH THE
NON-PLANAR END-EFFECTOR.

Object Method d(mm) | 6,(mm) | dy(mm)
Ruler | Proposed approach | 1.12 0.70 4.11
Ruler Tactile Image 1.12 0.53 2.38
Mug | Proposed approach | 1.86 0.96 5.21
Mug Tactile Image 1.81 0.82 6.12

contour reconstruction. However, to overcome this limitation,
we are currently evaluating the possibility of performing the
same operation of resampling and interpolation directly on
the 3D mesh, thus obtaining a finer mesh [14].

In terms of execution time, the proposed method is signifi-
cantly faster. The computational time of the proposed method
linearly scales with the number of vertices composing the
mesh. Indeed, although Equation (4) requires the adjacency
list, the maximum number of adjacent vertices is constant
and fixed by the Delunay triangulation.

In the case of the curved patch, the code implementing
Equation (4) takes an average of 0.075 ms to be executed for
all taxels on a computer equipped with an Intel i7-10875H.

The computational time required to generate the tactile
image linearly scales with the number of rows and columns.
However, the execution time of the whole pipeline depends
on the size of the contact area. Indeed, the pixels describing
the contours (extracted from the tactile image) need to be
back-projected on the skin mesh. The time required by
this operation depends on how many pixels must be back-
projected. In the case of the contour following, the method
based on tactile images takes an average of 3.7 ms to be
executed.

VI. CONCLUSION

In this paper a local filtering technique for robot skin
data has been proposed. Differently from previous literature,
where tactile images were used to process the contact shape,
the proposed method can be directly applied even with a non-
regular and non-planar arrangement of the tactile sensors,
thus avoiding the use of additional processing steps needed
to convert the tactile data to images. In particular, it has been
shown how the proposed technique can be used to design a
filter extracting sharp variations in the contact distribution.
The filter was validated in a simple task of planar contour
following, where the robot was commanded to follow a
straight path and a circular one. As a possible extension of
the work, several other filters can be designed to perform
lowpass filtering or noise reduction, just to name but a few.
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