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Abstract— Robots with different sensors could help in under-
standing different aspects of the environment they are working
in; however, each sensor modality is often processed individually
and information from other sensors is not utilized jointly. One
of the reasons is different sampling rates and dimensions of
different modalities. In this paper, we use multimodal data
fusion techniques such as early, late and intermediate fusion for
grasp failure identification using four different 3D convolution-
based multimodal neural networks (3D-MNN). Our results
on a visual-tactile dataset shows that the performance of the
classification task is improved while using multimodal data. In
addition, a neural network trained with 30:22 train-test split of
multimodal data achieved accuracy comparable to a network
trained with 78:22 train-test split of unimodal data.

I. INTRODUCTION

Machine learning and deep learning models are widely
used for complex tasks in robotics such as manipulation,
navigation, object detection and classification. Vision is the
dominant modality used in several learning-based appli-
cations. Although vision-based applications have achieved
state-of-the-art results, they typically process and focus on
improving the performance of a task using a single modality.
Moreover, relying only on a single visual modality, such as
an RGB camera, may impose multiple challenging situations
such as poor illumination, motion or lens blur and limited
field of view.

To address these problems, researchers proposed a human-
like approach to learn a task from multiple sensory modal-
ities; also called multimodal learning [1]-[4]. For example,
multiple sensors can capture the occurrence of an event in
different ways. In addition, multimodal perception allows
models to depict multiple sources of information to learn
a task which is more robust than unimodal data [5]. Such
models can also boost accuracy by 10% to 25%, can adapt
to different environments and work in the absence of other
input modalities. For example, a model trained on multiple
modalities can produce good outputs even if one of the
modalities is missing.

However, teaching models to process and combine multi-
modal data is challenging because of multiple reasons such
as different dimensions of sensor data, heterogeneity gap
between the original data and extracted features, effective
sensor fusion and limited number of multimodal datasets [5].
Therefore, in this paper, we propose a 3D convolution-based
multimodal neural network (3D-MNN) with different fusion
techniques for the grasp failure detection task. We use visual,
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tactile and finger joint positions from a multimodal visual-
tactile dataset [6]. We further demonstrate the effectiveness
of the proposed network by performing comparative exper-
iments of the 3D-MNN model with different sensor inputs
and different fusion strategies.

II. RELATED WORK

Combining multiple modalities at different levels such as
data level, feature level or decision level is called data or
sensor fusion [7]. Some of the techniques for data fusion
are Kalman filter, maximum likelihood, Bayesian networks,
and neural networks. Bayesian networks, Kalman filter and
maximum likelihood techniques are used for state estimation
or tracking the target under moving conditions [8], [9].
Neural network based fusion approaches have been more
popular recently because of their speed and accuracy.

Sensor fusion is further divided into four categories as
seen in Figure 1. In early fusion, data are combined at
the early stage or sometimes before extracting features.
However, temporal and context dependencies or interaction
between modalities is lost in early fusion. Intermediate fusion
combines the learned features of different modalities which
helps in preserving temporal and contextual information for
individual modalities. There exists numerous approaches for
feature level fusion such as concatenation [1], [2], [10],
tensor product [11], temporal fusion using Long short-term
memory (LSTM) [12] and element-wise summation [13].
Multilayer fusion methods combine sensor data at multi-
ple layers of feature extraction. Studies such as [14], [15]
perform multilayer fusion using gated units. In late fusion,
each input modality is trained using a separate model and
the decision of each model is combined in different ways;
for example using voting, maximum, minimum, sum, prod-
uct, median or multiplicative fusion. It can be seen as an
ensemble of classifiers.

In grasp verification, Calandra et al. [16] shows that using
vision and tactile modalities together improves the grasp
success rate. Lee et al. [1] obtain the joint representation of
video, force, velocity and position of a robotic arm to learn
manipulation control policies effectively. Inceoglu et al. [3]
identify grasp failure from audio, RGB and depth image
modalities using a 2D Convolutional Neural Network (CNN).
However, these studies use multimodal information at a
specific time instance and do not utilize temporal information
of input modalities. Cui et al. [2] uses a 3D CNN to assess the
grasp state by fusing visual and tactile data. Their approach
is similar to ours; however, they perform only intermediate
fusion and do not provide a comparison with other fusion
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of the previous studies provide a comparative evaluation of
different fusion strategies on grasp verification task using
multimodal data. Hence, we present 3D-MNN to understand
the effectiveness of different fusion strategies.
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Fig. 1: Data fusion strategies explained with two modalities
using a high-level diagram. Gray color indicates the level
where different modalities interact with each other.

IIT. METHODOLOGY

Our goal is to predict the current grasp state as success
or failure from visual, tactile and joint position data using
different fusion methods. Consider visual {X,1,X,2, - , Xym }+
tactile {X;1,X;2,---,Xyu} and position {X,1,Xp0, -+, Xpm}
input sequences. We first extract the features (F,,) for each
modality using visual (M,), tactile (M), and position (M)
neural networks. Then extracted features are passed through
binary classification function FF to predict the grasp state Y.
The problem is formulated in Equations (1) and (2) as in [2].

thp = Mv(le ;Xv27 T 7va) @

M, (X1, X2, Xim) ED (D
Mp(XplaXp27"' 7Xpm)
Y =F(Fyp),Y €0,1 (2)

Where, m is the number of frames in each modality and
output is O for grasp failure or 1 for success. This problem
is further decomposed in early (3D-MNN,,,), intermediate
(BD-MNN;;,,) and late fusion (3D-MNN;,.) with minor
changes in the network structure. M,, M;, M, are imple-
mented as 3D-CNNs and the classification function F is
implemented by Fully-Connected (FC) layers.

A. Dataset

We use the visual-tactile multimodal dataset [6] where the
robot is performing pickup task for 10 different objects. The
robotic hand is equipped with 16 tactile sensors and 8 motors
to control fingers. RGB videos are recorded using third
person front and left cameras. We select RGB front video,
tactile data and joint position data containing 1658 grasp
experiments of approximately 18 seconds each. Figure 2
shows an example where a coffee tin slips through the hand
during a grasp.

B. Model Details

An overview of the proposed models is shown in Figure 3
and the detailed architecture of one of the models, 3D-
MNNjy, is shown in Figure 4. Most of the network com-
ponents such as 3D-CNN and FC layers are reused between
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Fig. 2: Visualization of video frames from the front camera
during a pickup task. Frames are visualized at every second
starting from the top left and ending at the bottom right [6].

different models; except for the change in network input
modality dimension. In all our experiments, the frame length
is 18 for each modality; which corresponds to 1 second of
the execution. Moreover, all three input modalities are time-
aligned with each other.

In 3D-MNNga1y1 (see Figure 3a), we aim to fuse tactile
and position sensor data in the early stage by concatenating
hand extracted features such as summation, minimum, maxi-
mum, mean, standard deviation, kurtosis, skewness, principal
component analysis (PCA), 20th, 40th, 60th, 80th percentile
from each sensor channel. These statistical features are most
commonly used and describes the time series data with
few numbers. Finally, we have 18 image frames of shape
3x 112 x 112, 192x1 vector for tactile and 96x1 vector
for the position data input to the model. The features from
the visual modality of shape 512 x 1 are concatenated with
temporal features of shape 16 x 1. The final grasp state output
is classified by two FC layers.

For the other three models, we use a visual representation
of the tactile sensor and joint positions, because of matrix-
like sensor placement. The tactile sensors on the robotic
hand are spatially correlated to each other, hence converting
the tactile channels into a 2D grid like structure allows
us to use CNNs to extract spatial features as well. The
same applies to the joint position data. In 3D-MNNeyyo
(see Figure 3b), a tactile and position image of shape 4 x 5
is combined in the early stage prior to feature extraction.
Visual features of shape 512 x 1 and temporal features of
shape 64 x 1 are concatenated before giving input to the
classification head. In 3D-MNN;j,; (see Figure 3c), features
from all three input modalities are extracted separately and
spatio-temporal features are fused in the intermediate stage.
Finally, in the late fusion model 3D-MNNj,. (see Figure 3d),
feature extraction and classification for each input modality
is done separately, and the final decision from each modality
is fused by calculating the mean value.

IV. EXPERIMENTAL RESULTS

The proposed models for robotic grasp verification were
evaluated on the visual-tactile dataset [6]. We split the
available data into train and test sets in three ways: i)
TTrandom: data are randomly split with a 80:20 train-test
ratio; ii) TTobject: data are split based on the object being
manipulated to test generalizability to unseen objects (78:22
ratio) and iii) TTsides: data are split based on the grasp
strategy (top and right grasp for training, and back grasp
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performance after reducing the dimension of the feature map
of the visual modality. Then it is concatenated with other
modalities. This helped us to improve accuracy from 86.9%
to 90.8%. The overall comparison reveals that intermediate
fusion performs better than early or late fusion. Therefore, we
use 3D-MNN;, network for all other experiments to evaluate
other properties of the network.
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(b) are 3D-MNNgyy; and 3D-MNNeyy2 network respec-
tively with two different early fusion approaches. (c) 3D-
MNN;,; network with intermediate fusion. (d) 3D-MNNj,.
network with late fusion.
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Fig. 4: 3D-MNN;j,; architecture using 3D ResNet-18 as a
feature extractor for visual and two layer 3D-CNN for tactile
and joint position modalities. The input to the network is 18
frames from all the modalities, where visual is 3 channel
(RGB) and tactile or joint position data are single channel
grayscale images.

for testing) with a 68:22 ratio. We evaluate our approach
using accuracy, precision, recall and Fl-score.

A. Comparison Between Different Fusion Approaches

Table I summarizes results of different fusion approaches
using TTobject data split. The results are worse when using
only visual modality, because the decision of the classifier
was biased to features of visual objects. The accuracy and
precision has slightly improved for 3D-MNNcy1y; network
compared to unimodal network. Whereas, 3D-MNNea1y2
and 3D-MNNj, do not show much improvement when all
modalities are used. 3D-MNN;,; network achieves the best

T Reducing the dimension of visual feature map from 512 x 1 to 16 x 1
before the feature fusion.

B. Training Data are Reduced to 30% in TTobject Split

This experiment is interesting especially to observe the
network performance when we do not have a large dataset.
Therefore, training data are reduced to only 30 % from 78%
by removing samples randomly from the training set and
while the test set remains unchanged. As seen in Table II,
the performance for most modality variants decreases as
expected compared to the Table I (especially results from
the tactile modality). Video+tactile+joint position still per-
forms the best, and tactile+joint position in fact shows an
improvement in performance compared to Table I. Hence,
this experiment shows that learning with multimodal data
can be maximized even with a small dataset.

TABLE II: Comparison of our results using TTobject split
where training set is reduced to 30% from 78%.

Classifier } Video Td(;‘:zltlltlz [ Pos } Accuracy ‘ Precision ‘ Recall ‘ F1-score
AD.CNN N 0.801 0.801 0.999 0.889
(No Fusion) v’ 0.849 0.847 0.991 0.913
N 0.856 0.851 0.994 0.917

N v’ 0.874 0.869 0.991 0.926

3D-MNNip, v’ v’ 0.889 0.889 0.983 0.934
N v’ v’ 0.891 0.889 0.987 0.935

C. Training and Testing using Data Split TTrandom

This experiment helps to compare our result with the
classical machine learning techniques such as K-Nearest
Neighbors (KNN), Support Vector Machine (SVM), Naive
Bayes (NB) and LSTM as reported in [6]. They use only
tactile data for their experiments and report only accuracy.
Experiments using TTobject split perform worse than the



random split, however it outperforms LSTM or SVM. Ta-
ble III shows that the 3D-MNN;j,; network using random split
outperforms classical machine learning techniques. Only the
video modality achieves the same accuracy as LSTM. Results
are improved as more modalities are used. Finally, using all
three modalities (video+tactile+joint position) provides the
best performance with the TTrandom split.

TABLE III: Comparison of our results using TTrandom split.
Our approach with only tactile data outperforms the results
from SVM classifier.

Classifier } Video l\w(’]l‘l:\iltlltl}e/ [ Pos } Accuracy ‘ Precision | Recall ‘ F1-score
KNN [6] N 0.797 - - -
SVM [6] v’ 0.847 - - -
NB [6] N 0.688 - - -
LSTM [6] v’ 0.846 - - -

ADCNN | v 0.846 0.853 0.980 0912

(No Fusion) | ... N 0.892 0.919 0.951 0.935

v’ 0916 0.937 0.962 0.949

v’ v’ 0.926 0.945 0.966 0.955

3D-MNNjye | V'F VT VT 0951 0.979 0.962 0.970

WV v’ v 0.957 0.981 0.966 0.973

 Network is trained using 50% of training data

V. CONCLUSIONS

A network 3D-MNN is proposed in this paper to evaluate
the robotic object grasp state by employing different fusion
methods on visual, tactile and joint position modalities.
On a visual-tactile dataset, we compare results from early,
intermediate and late fusion methods; and observed that
intermediate fusion with all three modalities has the highest
F1-score. Also, the multimodal network’s performance using
30:22 train-test split is as good as results obtained by 78:22
train-test split. Hence, the proposed network can learn even
with less data and reduces the problem of over-fitting.

Future work can explore the use of attention-based net-
works [17], [18] for learning to attend to the important
modalities. Further experiments can be conducted to test the
limit of the network in terms of the number of modalities
it can fuse and exploring learning error minimization tricks
for multimodal networks.
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