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Abstract— We present a holistic grasping controller, com-
bining free-space position control and in-contact force-control
for reliable grasping given uncertain object pose estimates.
Employing tactile fingertip sensors, undesired object displace-
ment during grasping is minimized or completely avoided,
by stopping the finger closing motion for individual joints as
long as force-closure cannot yet be guaranteed. Experiments
conducted on the parallel-jaw gripper of the PAL TIAGo robot
confirm the efficiency of the proposed approach.

I. INTRODUCTION

In recent years, service robotics has increased in popularity
in both, commerce and research. The most important skills
to master for robots that are employed in a household setting
are object grasping and manipulation. Unfortunately, today’s
robot performance in this domain is mostly underwhelming
due to a large variety of environments, resulting in a high
degree of perceptual uncertainty, as well as the lack of (force)
feedback during physical interaction with objects.

As a majority of available service robots only have non-
sensorized end-effectors, they rely on open-loop grasping
approaches [1]. Due to high uncertainty in object pose
estimation, these methods often have undesired side effects
during manipulation. Without tactile sensors, they are unable
to detect object contact and cannot adapt their pre-determined
end-effector trajectory accordingly. Thus, they risk tipping
over the to-be-grasped object or displacing it in some other
unintended fashion, sometimes rendering a stable grasp in-
feasible. Having established a stable grasp with an object, it
is important to control contact forces to avoid damage to the
object. By equipping their end-effectors with tactile sensors,
robots can synchronize their finger-closing motions, flexibly
adapt to sensed object contacts, and control contact forces
exerted onto the object. This allows the robot to detect and
react to erroneous object pose estimates and to gently grasp
also fragile objects.

Another challenge in this field of research is posed by
the high diversity of both, robot end-effectors and tactile
sensors. Kappassov et al. [2] reviewed over 28 different
fingertip sensors for dexterous hands alone. Other types
of end-effectors are usually combined with different sensor
types, increasing the number of end-effector sensor com-
binations even more [3]. Most of the research on grasp
force control was therefore targeting specific combinations
of an end-effector and its tactile sensors, e.g. the Shadow
Robot Hand grasping unknown objects in simulation [4] or
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Fig. 1: Grasping an object with TIAGo’s sensorized parallel-
jaw gripper.

with MID fingertip sensors [5], the PR2 with a pressure
sensor array mounted on a parallel-jaw gripper [6], or a
three-fingered robot hand in simulation [7]. Providing an
end-effector-agnostic solution would greatly decrease the
individual development effort for new robot platforms that
employ tactile sensors on their end-effectors.

The main contribution of our work is a holistic grasp
controller that makes as little assumptions about the robot
platform as possible. It is well-suited for different types
of end-effectors and tactile sensors and its core library is
middleware agnostic. The controller aims at an increased
robustness when establishing object contact during the finger-
closing phase, compensating for perceptual uncertainties in
object pose estimation. To this end, the controller notices uni-
lateral object contact and pauses finger-closing until a force-
closure grasp can be guaranteed. In this fashion, undesired
object displacement during the grasping phase is minimized
or completely avoided. Additionally, we propose a grasp
force controller for the holding phase, which is applicable to
a large variety of end-effectors and tactile sensors. We verify
these claims in a set of real-world experiments using the
service robot TIAGo with a sensorized parallel-jaw gripper
as shown in Fig. 1.

II. RELATED WORK

In a review of human grasping, Johansson and Flanagan
[8] highlight the importance of tactile sensations for this skill.
They divide the manipulation task into different phases and
argue that during each phase, a different controller is respon-
sible for generating the hand movements. The first goal is



thereby to acquire a stable object contact and then increasing
the force that is exerted on the object. For the choice of
the target force, humans rely on previous knowledge which
they gather from past manipulation experiences. We follow
this approach and divide the grasping task into three phases
similar to their reach, load, and hold phases.

[6] developed a force controller for the PR2 robot that
is based on findings of [8]. They divide the grasp into
different phases where they switch from free position control
to force control upon object contact. Their work also covers
lifting the object and corrections afterwards, e.g. when object
slippage occurs. One of their assumptions is that the robot
is always able to position its gripper such that the fingers
are equidistant to the object. In contrast, our controller
accounts for non-optimal end-effector to object alignment
by synchronizing finger movements upon object contact.

Other approaches mathematically motivate how force con-
trol can be realized on robot end-effectors [4], [7]. By con-
straining finger movements depending on their contribution
to the force exerted on the object, they avoid undesired
object movements thus improving grasp stability. Like in our
approach, [4] uses a PI controller to realize force control.
However, their method is designed specifically for multi-
fingered hands and does not consider finger synchronization
as our approach.

Machine learning techniques are also used in manipulation
to improve grasping performance in uncertain environments.
[9] use SVMs to detect unstable grasps and adjust them to
improve grasp stability on a three-fingered gripper. In [10],
the authors use contact information from tactile sensors in
combination with reinforcement learning. Their results show
that using tactile feedback for machine learning methods,
grasp robustness is greatly increased in simulation. As with
all machine learning methods, generalization is one of the
largest challenges. Reproducing these results would therefore
be a time-consuming task even for only slightly different
robot setups.

III. GRASP CONTROLLER

We propose a holistic control approach for grasping,
covering all phases from finger closing over establishing
contacts to holding (cf. Fig. 2). Consequently, the controller
state distinguishes these three phases and applies a different
control strategy in each of them. During state I, i.e. when the
fingers are approaching the object, the controller performs
open-loop trajectory control, following a pre-planned joint
trajectory targeting a hand posture that would eventually
penetrate the object. However, as soon as a tactile sensor
reliably detects contact, i.e. perceives a contact force f(t) just
above the noise threshold fθ, all joints along the kinemetic
chain from the sensor link up to the hand base switch into
state II. Within this state, these joints stop moving and thus
just maintain contact with the object. This avoids undesired
object pushing during finger closing in situations where the
object is not perfectly centered between the fingers. Alter-
natively we also considered actively maintaining a contact
force at the noise threshold level. However, due to noisy
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Fig. 2: State diagram illustrating the 3 phases of grasping.

force measurements this still resulted in a continued closing
motion, displacing the object in an undesired manner.

Each time a new contact is established, the resulting
grasp is evaluated for force-closure [11] as described in
sec. III-A. If the grasp is considered force-closure, state III
is entered, which finally performs grasp force control aiming
to maintain specific contact forces as outlined in sec. III-B.
Desired target forces can either be provided by a higher-level
cognitive system component based on common-sense object
knowledge; fragile objecs, for example, require a lower grasp
force than rigid and heavy objects. Alternatively, the grasp
forces could be reactively adapted due to recognized incipient
slippage as suggested e.g. in [5], [12].

A. Evaluating Force Closure

Force-closure is a formally defined property of a grasp
configuration stating that the grasp can balance any
(bounded) external disturbance wrench with contact forces
fi that satisfy the friction cone constraints, i.e. don’t induce
local slippage. To determine the net wrench applied onto
an object through contact points pi, independent contact
forces fi are mapped onto 6-dimensional contact wrenches
FCi

= (fi, τi) expressed in local contact frames Ci, which
are then transformed into the common object frame O using
Ad>

T−1
oci

, where they are finally summed up to yield the net
wrench FO expressed in frame O [11]:

F =

n∑
i=1

Ad>
T−1
oci

· Fi =

n∑
i=1

Ad>
T−1
oci

Bi · fi ≡ G · f (1)

B> =

[
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

]
Ad>

T−1
oci

=

(
Roci

p̂oci ·Roci Roci

)
Here, f = [f>1 , . . . , f

>
n ]> denotes the vector of concatenated

contact forces fi, G denotes the grasp matrix, and B ≡ Bi
is the wrench basis modelling soft-finger contacts [11]. The
latter is a point-contact model allowing for force transmission
along normal (fi,z) and tangential (fi,x, fi,y) axes as well as
for torque transmission along the normal axis of the contact
(fi,τ ). These independent force components fi ∈ R4 need to
satisfy friction cone constraints FCi derived from Coulomb
friction to avoid slippage:

0 ≤
√
f2i,x + f2i,y ≤ µifi,z and |fi,τ | ≤ µi,τfi,z .

A grasp defined by its grasp matrix G and the collection
of all friction cone constraints FC = FC1 × . . . × FCn is
force-closure, iff G is surjective and there exist strict internal
forces, i.e. forces fN that strictly satisfy the friction cone
constraints and that don’t have a net effect onto the object
(G · fN = 0). Both conditions can be easily verified given
the geometry of the grasp, i.e. its contact locations pi ≡



poci and contact normals ni (determining Roci ), as well as
a conservative estimation of the friction coefficients µ ≡ µi.

B. Grasp Force Control

We assume that tactile sensors only provide contact forces
along the normal direction at the contact point. This rather
weak assumption allows applying the grasping force con-
troller to a large variety of tactile sensors [2], but restricts
the precision of the achievable control result. Traditional
grasp force controllers strive for a globally optimal contact
force distribution ensuring grasp stability, i.e. ensuring that
(i) all contact forces stay within friction cone bounds, (ii)
applied forces exactly balance external forces (e.g. gravity),
and (iii) local contact forces are minimized [11]. However,
this approach is only meaningful if the full 3D contact
force is controllable and thus measurable. Here, we assume
we cannot measure shear forces nor determine the friction
coefficients required to evaluate friction cone constraints.
Further, we assume that force measurements are noisy and
poorly calibrated – a reasonable assumption for many high-
density tactile sensor arrays. This means in particular that
antipodal forces being perfectly in balance in the physical
world might result in unequal force sensor measurements
or, phrased the other way around, that given balanced force
measurements, the actual physical forces might not perfectly
sum up to zero, thus resulting in a net force applied to the
grasped object, eventually inducing drift.

Consequently, we are not primarily aiming at realizing a
zero net wrench onto the object as proposed in traditional
grasp force controllers like [7]. Rather, our starting point is
the realization of desired contact (normal) forces f goal

i for
individual contact sensors i. Only as a subordinate control
objective, we consider a zero net force, thus avoiding object
drift during holding.

Given the desired normal force magnitudes f goal
i and the

normal directions ni at the contact locations pi, we can
determine the corresponding 3-dimensional force vector as
follows:

f goal
i = f goal

i · ni (2)

To simplify notation, we consider all vectors being repre-
sented with respect to a common coordinate frame, namely
the end-effector base frame, if not otherwise stated. Within
this work, we further assume that the end-effector is position-
controlled. Consequently, we transform force deltas into
Cartesian position deltas according to Hooke’s law:

∆xi(t) =
1

k
∆fi(t) =

1

k
(f goal
i − fi(t)) · ni , (3)

where k characterizes the object’s stiffness. Estimating k
accurately is difficult in practice, thus we utilize PI control
to account for uncertainties in estimating k:

ui(t) = KP ·∆xi(t) +KI

∫
III

∆xi(τ) dτ (4)

Here, KP and KI denote the coefficients for the proportional
and integral terms and the integral is calculated over all time
steps since the transition into phase III. If f goal is not reached,

the increasing integral term will push the controller to do so
regardless of erroneous estimates of k.

Finally, joint position deltas are computed via inverse
velocity kinematics, employing the pseudo-inverse of the
overall sensor Jacobian J(q):

∆q(t) = J† · u(t) , (5)

where the Jacobian J(q) maps joint velocities q̇ onto Carte-
sian velocities ẋ = [ẋ>

1 , . . . , ẋ
>
n ]> of all sensor frames i =

{1, . . . , n}. u = [u>
1 , . . . ,u

>
n ]> denotes the concatenated

control vector. The commanded joint positions eventually are
determined by simple integration:

qcmd(t) = q(t) + ∆q(t) . (6)

C. Drift Compensation

To compensate for object drift caused by poor estimation
of actual 3d force vectors as outlined above, we suggest to
superimpose force control with object-pose control. This can
be done based on visual feedback as suggested in [13] or
based on a virtual object frame estimated from initial contact
points as suggested in [7]. We didn’t yet implement this drift
compensation, but leave this for future work.

D. Implementation

In order to be compatible with most modern robots, we
implemented the grasp controller using ROS [14], the most
commonly used robotics middleware. The default controller
library ros control [15] offers a JointTrajectoryController
(JTC), which performs free position control for a set of
joints given a trajectory. Our controller inherits from the
JTC class keeping all its interfaces. Hence, a grasp can be
initiated by sending a JointTrajectoryActionGoal in the same
fashion a JTC task would have been triggered. Therefore,
our controller can easily be integrated into existing grasping
pipelines without much effort. Parameters specific to force
control can be adapted via designated ROS services adver-
tized by our controller.

The controller offers two different modes for phase III: an
open-ended force control mode and a mode finishing control
upon reaching the desired force. For the former one, the
controller attempts to hold the desired force forever. During
this mode, the desired force can still be changed, e.g. to raise
grip strength while moving the arm. The latter mode signals
action success once all tactile sensors reach their desired
force.

IV. EXPERIMENTS

We evaluated the control approach on the TIAGo robot,
a service robot developed to serve in household settings.
Hence, manipulation is one of its most important capabilities.
It has a 7 DoF arm with end-effectors that can be easily
exchanged or modified, making it an extensible and adaptable
manipulation platform. It is available either with a parallel-
jaw gripper or a five-fingered hand. For our experiments,
we decided for the parallel-jaw gripper as it (i) allows for a
larger gripper opening, (ii) provides a higher grip force, and
(iii) allowed for easy integration of simple tactile sensors.



TABLE I: Statistics of uncalibrated sensor readout.

Finger µ σ max

Left 0.01577 0.00459 0.03322
Right 0.00273 0.00367 0.01777

By default, TIAGo’s gripper has two plastic fingers that
are not sensorised. In order to measure contact forces at the
fingers, we designed a new set of fingers employing load
cell/strain gauge sensors as the finger ”bones” mounted to the
gripper’s base and augmented with a finger tip as shown in
Fig. 1. These sensors measure the force applied to their tips
using a Wheatstone Bridge. A LabJack U6 is used to convert
the analog sensor signals to digital ones. TIAGo’s internal
computer handles the sensor acquisition employing Lab-
Jack’s Python API using the parameters resolutionIndex = 0
and gainIndex = 3. We found this combination to yield the
best results in terms of sampling frequency and noise. Fi-
nally, the sensor values are bias-compensated and published
on a ROS topic.

To this end, we determined the sensor bias from 10.000
raw sensor readings, when no load was applied to the
sensors. The bias statistics is summarized in table I. Based
on the highest measured values, we also set a conservative
noise threshold fθ = 0.21N to avoid false-positive contact
detections. Choosing a well-suited value is crucial for the
controller’s performance. A too tight threshold can lead
to premature stopping of the finger-closing phase, while a
too conservative threshold greatly affects the controller’s
sensitivity. In practice, the thresholds have to be changed
very rarely as they have shown to be rather stable across
robot restarts.

To assess the sensor’s first-touch sensitivity, we aligned
them parallel to the ground and placed small weights (dif-
ferent Euro coins) on their tips until the measured sensor
value was continuously above the threshold fθ for a period
of 30 seconds. In this fashion, we determined first-touch
sensitivities of 0.35N and 0.38N for the left and right
sensors respectively, which is roughly twice as much as
fθ. As the difference in sensitivity is rather small, we can
safely assume that the measurements from both sensors
are comparable, thus avoiding the need for explicit drift
compensation.

As the gripper’s fingers are directly opposing each other,
the control algorithm is significantly simplified. Firstly,
force-closure is automatically guaranteed as soon as both
fingers establish contact. Secondly, the sensor Jacobian is
the identity matrix, representing a one-to-one relation be-
tween Cartesian sensor displacements and joint motions, thus
avoiding the need to compute the inverse kinematics.

To assess the capability of the grasp controller to perform
robust object grasps given uncertain object pose estimations,
we performed a series of experiments, comparing the pro-
posed controller to an open-loop baseline, which is what
most robot platforms nowadays use by default. Our main
focus is whether the robot can manipulate the object robustly,

i.e. neither damaging nor tipping over the object. To this
end, we present three different experiments which evaluate
different aspects of the controller.

In experiment 1, we show that the controller is able to
handle objects more carefully than a controller without force
feedback. TIAGo starts with its arm in a pre-grasp pose,
its end-effector is positioned a few centimeters above the
surface of a table with its fingers in the open position. Then,
a soft object is placed in the center between the fingers and
the gripper is closed using either the JTC or the proposed
controller. The experiment is repeated three times with each
controller and the object diameter is measured after closing
the gripper. We expect that the JTC will exert more force
on the object than the force controller and therefore has a
higher chance of damaging the object.

Experiment 2 investigates the controller’s robustness with
respect to object position uncertainty. In real-world scenarios,
the end-effector is rarely centered perfectly around the object,
especially with mobile robots estimating the object pose by
vision. Thus, with experiment 2, we analyze the behavior of
the controller in situations where the initial gripper placement
is non-optimal. The experiment setup is similar to 1, with
the difference that the objects are not any longer centered
between the fingers, but placed closer to one of the fingers.
The object displacement during grasping is measured using
millimeter paper that is fixed to the table surface. When
detecting the first touch with the closer finger, the controller
should stop the motion of this finger until the second finger
acquired object contact as well. Hence, we assume that
the new controller will cause much less undesired object
displacement in contrast to JTC. The most important part of
this experiment is to detect the first touch as soon as possible
and to do so reliably. This depends on a variety of factors:
quality of the calibration, choice of the noise threshold, and
sensor sensitivity in general. We repeat this experiment with
three objects that have different weights in order to assess
the sensitivity of our force sensors during grasping. Each
controller grasps each object three times with a constant
offset to one of the fingers, resulting in 3 · 3 · 2 = 18 trials.

With experiment 3 we demonstrate the controller’s robust-
ness with respect to external forces applied to the object
while trying to maintain a target force. The setup is the
same as in 1, however the controller is instructed to maintain
the target force instead of finishing the control task. Once
the robot grasped the object, the target force is changed to
show how the controller adapts to target changes. Afterwards,
random external forces are exerted onto the object and the
robot’s fingers by a human.

During preliminary controller tests, we have determined
the PI coefficients KP = 1.9 and KI = 3.2. The coefficients
were tuned in such a way that overshooting the target force
is prevented. This can lead to a slightly slower convergence
to the target force but ensures that the object is not damaged.
As humans heavily rely on accurate previous knowledge
about the object and its stiffness [8], we also estimated k
for each object in preliminary trials. To this end, k was
chosen rather high initially, resulting in small position deltas



Fig. 3: Comparison of the final gripper postures of the
proposed grasp controller (left) and the JTC (right).

TABLE II: Object displacements for different object weights.
Displacements are measured in millimeters.

Object Weight k JTC our controller

Styrofoam 2g 800 15.8± 0.8 15.6± 0.8
Tape roll 49g 1000 12.3± 1.3 4.9 ± 1.9

Glass Bottle 265g 2500 9.3± 0.7 1.6 ± 0.5

to prevent object damage. If convergence was too slow it
was decreased, if the controller exhibited overshooting, it
was reduced. This process has proven to be rather quick,
requiring only about five trials per object. The used stiffness
values are summarized in Table II.

V. EXPERIMENTAL RESULTS

In experiment 1, we evaluated whether our controller is
able to handle objects with more care than JTC. To this end,
we used the tape roll shown in Fig. 3 with a nominal diameter
of 51mm. After grasping, the object diameter was reduced to
28±1.5mm and 47±1mm for the JTC resp. our controller,
averaged over three consecutive trials. Thus, our controller
reduced the object diameter by 10% while JTC reduced it
by 46% on average. This confirms our assumption that the
proposed grasp controller is able to regulate forces during
grasping, thus preventing object damage.

For experiment 2, we used three objects with different
weights. Table II shows the average distance each controller
moved the object in all six trials. For the first object, the
styrofoam cylinder, the displacement for both controllers
is very similar: this object was too lightweight to trigger
the first-touch detection on the force sensors. For the other
two objects, the displacement was significantly reduced. The
experiments prove, that for fairly light objects like the tape
roll (49g), TIAGo’s force sensors can reliably detect first
touch. In all cases the standard deviation is fairly small,
indicating a high degree of repeatability of the grasping
results.

Figure 4 compares forces and joint positions produced
during grasping with both controllers. Important events are
denoted by vertical dashed lines: establishing the first con-
tact with a finger, establishing the second contact with the
opposing finger, and the end of the control task. As an open-
loop controller, JTC commands continuously decreasing joint
positions (corresponding to fingers closing) regardless of
measured forces. The first contact isn’t noticed or considered.

After the second contact is established, the contact forces
quickly increase beyond the desired level f goal. Interestingly,
the force level decays in the following, which is presumably
due to a protection mechanism implemented in the low-level
gripper controller: For a short time the gripper can apply
the large forces observed, but then reduces motor currents to
self-protect from overheating.

With force control enabled, one can nicely observe that
the first finger stops its motion once it notices object contact.
Only if the opposing finger also acquires contact, the applied
forces increase smoothly until f goal is reached. Note that the
commanded joint positions are slightly smaller than actual
joint positions, which is primarily due to the integral term
of the PI controller.

The results from experiment 2 are twofold: it shows
that using force control, we can minimize undesired side
effects of object manipulation during the grasping stage.
As a consequence, our object manipulation becomes much
safer and more predictable. Furthermore, it shows that the
performance of any force controller highly depends on the
capability to detect first touch. That capability is in turn
dependent on the sensor sensitivity as well as its calibration.
These requirements should therefore be considered carefully
when choosing the sensor type and during its integration. As
sensor development progresses and improves, we expect to
see more sensitive sensors. Thus, with improved hardware,
force controller performance will improve as well, because
first touch can be detected earlier and more reliably.

In experiment 3, TIAGo grasped an easily deformable
object on a table in force maintainance mode. We illustrate
the outcome of this experiment with a video where all
the described behaviors can be seen. After grasping and
convergence of contact forces, we command a higher target
force f goal. As can be seen from the plots embedded in the
video, the controller quickly reacts to this change without
overshooting the new target. Afterwards, the controller was
disturbed by randomly applying external forces on the robot’s
fingers and onto the object. Here, the controller’s response
strongly depends on the choice of KI. For moderate KI =
3.1, the controller smoothly moves both joints to give way
and match the desired force again. Increasing KI too much
(in our case 6.2) caused the object to drift in the robot’s
gripper even after the external disturbance force vanished.
Only if a joint hits its joint-limit the drifting motion stops.
Although f goal is maintained all the time, this overreaction
to external forces leads to undesired object movements.
In future work, we will investigate drift compensation as
outlined in sec. III-C to improve on this situation as well.

VI. CONCLUSION AND FUTURE WORK

In this work, we have presented a holistic grasp controller
that combines free position control during finger closing with
force control during holding. Based on the mathematical
foundations of force-closure grasps and inspired by human
grasping behavior, we implemented a controller that mini-
mizes undesired object displacement by stopping the finger
closing motion as soon as object contact is detected. In the



Fig. 4: Commanded joint positions and measured forces during a grasp.

object holding phase, desired contact forces are maintained
with finger-local controllers, which turned out to be sufficient
to avoid object drift due to unbalanced net forces in most
grasping situations.

Our experiments have shown that our controller is able
to handle objects much more gently and that it minimizes
undesired object movements, given that is able to sense the
object contact. Additionally, if tuned correctly, it is also able
to withstand external forces exerted on the object or joints.

Although demonstrated for a simple parallel-jaw gripper
only, the approach generalizes to multi-fingered hands, an
aspect to be investigated in future work in more detail.
Another interesting aspect to investigate in future, is how
to avoid undesired object drift after applying external dis-
turbance forces as observed in experiment 3. Furthermore,
we plan to estimate the object’s stiffness k during grasping,
avoiding the need for prior estimation of this parameter.
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